The Projection Matrix
 Lecture 25

Robb T. Koether
Hampden-Sydney College
Wed, Nov 6, 2019

Outline

(9) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates

4 Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix
6) Orthogonal Projections
(7) Assignment

Outline

(9) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates
(4) Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix
6) Orthogonal Projections
(7) Assignment

Debugging Tip of the Day

Debugging Tip of the Day

- To locate the statement causes the program to crash, first comment out all statements within the function.
- Run the program.
- Then uncomment the statements one by one, running the program each time until it crashes.
- At that point, you have found the statement that is causing the crash.

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates

4 Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix

6 Orthogonal Projections
(7) Assignment

The Graphics Pipeline

The Graphics Pipeline

Homogeneous Coordinates

- Points are stored in homogeneous coordinates (x, y, z, w).
- The true 3D coordinates are $\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)$.
- Therefore, for example, the points $(4,3,2,1)$ and $(8,6,4,2)$ represent the same 3D point $(4,3,2)$.
- This fact will play a crucial role in the projection matrix.

Coordinate Systems

- Eye coordinates
- The camera is at the origin, looking in the negative z-direction.
- View frustrum (right, left, bottom, top, near, far).
- Normalized device coordinates

$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1 \\
& -1 \leq z \leq 1
\end{aligned}
$$

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates
(4) Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix
(6) Orthogonal Projections
(7) Assignment

The Transformation

- Points in eye coordinates must be transformed into normalized device coordinates.
- But first they are transformed to clipping coordinates.

The Transformation

- For example, the near-upper-right corner $(r, t,-n, 1)$ in eye coordinates is transformed to ($n, n,-n, n$) in clip coordinates.
- The far-bottom-left corner $\left(I\left(\frac{f}{n}\right), b\left(\frac{f}{n}\right),-f, 1\right)$ in eye coordinates is transformed to $(-f,-f, f, f)$ in clip coordinates.
- This is done in two steps.

The Transformation

- For example, the near-upper-right corner $(r, t,-n, 1)$ in eye coordinates is transformed to ($n, n,-n, n$) in clip coordinates.
- The far-bottom-left corner $\left(I\left(\frac{f}{n}\right), b\left(\frac{f}{n}\right),-f, 1\right)$ in eye coordinates is transformed to $(-f,-f, f, f)$ in clip coordinates.
- This is done in two steps.
- By the way, this is why the ratio $\frac{f}{n}$ should not be too large.

The Transformation

- For example, the near-upper-right corner $(r, t,-n, 1)$ in eye coordinates is transformed to ($n, n,-n, n$) in clip coordinates.
- The far-bottom-left corner $\left(I\left(\frac{f}{n}\right), b\left(\frac{f}{n}\right),-f, 1\right)$ in eye coordinates is transformed to $(-f,-f, f, f)$ in clip coordinates.
- This is done in two steps.
- By the way, this is why the ratio $\frac{f}{n}$ should not be too large.
- Erik, what happens if $\frac{f}{n}$ is too large?

The Perspective Transformation

- In the first step (near plane),

$$
\begin{aligned}
(r, t,-n, 1) & \rightarrow(n r, n t,-n, n) \\
(I, t,-n, 1) & \rightarrow(n l, n t,-n, n) \\
(r, b,-n, 1) & \rightarrow(n r, n b,-n, n) \\
(I, b,-n, 1) & \rightarrow(n l, n b,-n, n)
\end{aligned}
$$

The Perspective Transformation

- In the first step (near plane),

$$
\begin{aligned}
(r, t,-n, 1) & \rightarrow(n r, n t,-n, n) \\
(I, t,-n, 1) & \rightarrow(n I, n t,-n, n) \\
(r, b,-n, 1) & \rightarrow(n r, n b,-n, n) \\
(I, b,-n, 1) & \rightarrow(n l, n b,-n, n)
\end{aligned}
$$

The Perspective Transformation

- and

$$
\left.\begin{array}{l}
\left(r\left(\frac{f}{n}\right), t\left(\frac{f}{n}\right),-f, 1\right) \rightarrow(f r, f t, f, f) \\
\left(I\left(\frac{f}{n}\right), t\left(\frac{f}{n}\right),-f, 1\right) \rightarrow(f l, f t, f, f) \\
\left(r\left(\frac{f}{n}\right), b\left(\frac{f}{n}\right),-f, 1\right)
\end{array}\right)(f r, f b, f, f) .
$$

The Perspective Transformation

- This is accomplished by the perspective matrix is

$$
\mathbf{P}_{1}=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

- Note the bottom row.

The Perspective Transformation

- In the second step,

$$
\begin{aligned}
(n r, n t,-n, n) & \rightarrow(n, n,-n, n) \\
(n l, n t,-n, n) & \rightarrow(-n, n,-n, n) \\
(n r, n b,-n, n) & \rightarrow(n,-n,-n, n) \\
(n l, n b,-n, n) & \rightarrow(-n, n,-n, n)
\end{aligned}
$$

The Perspective Transformation

- In the second step,

$$
\begin{aligned}
(n r, n t,-n, n) & \rightarrow(n, n,-n, n) \\
(n l, n t,-n, n) & \rightarrow(-n, n,-n, n) \\
(n r, n b,-n, n) & \rightarrow(n,-n,-n, n) \\
(n l, n b,-n, n) & \rightarrow(-n, n,-n, n)
\end{aligned}
$$

The Perspective Transformation

- and

$$
\begin{aligned}
(f r, f t, f, f) & \rightarrow(f, f, f, f) \\
(f l, f t, f, f) & \rightarrow(-f, f, f, f) \\
(f r, f b, f, f) & \rightarrow(f,-f, f, f) \\
(f l, f b, f, f) & \rightarrow(-f,-f, f, f)
\end{aligned}
$$

The Projection Transformation

- This is accomplished by the matrix

$$
\mathbf{P}_{2}=\left(\begin{array}{cccc}
\frac{2}{r-1} & 0 & 0 & -\frac{r+1}{r-b} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The Projection Matrix

- The product of the two transformations is the projection matrix.
- It is the matrix that transforms points from eye coordinates to clip coordinates.

$$
\mathbf{P}=\mathbf{P}_{2} \mathbf{P}_{1}=\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+1}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right) .
$$

Clipping Coordinates

- In clip coordinates, a point $P(x, y, z, w)$ is clipped if

$$
|x|>w \text { or }|y|>w \text { or }|z|>w .
$$

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates

4 Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix

6 Orthogonal Projections
(7) Assignment

The Transformation

- This is followed by the homogeneous divide, or perspective division.
- It is a nonlinear transformation.
- It transforms clip coordinates to normalized device coordinates.
- For example,

$$
\begin{aligned}
& (n, n,-n, n) \rightarrow(1,1,-1) \\
& (-f,-f, f, f) \rightarrow(-1,-1,1)
\end{aligned}
$$

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates
(4) Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix
6) Orthogonal Projections
(7) Assignment

The Projection Matrix

Example (Creating the Projection Matrix)

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(l, r, b, t, n, f);
```

- The function

$$
\text { glFrustum(l, r, b, t, } n, f)
$$

creates this matrix and multiplies the current projection matrix by it.

The Projection Matrix

- The function
gluPerspective(angle, ratio, near, far)
also creates the projection matrix by calculating r, l, t, and b.

The Projection Matrix

- The formulas are

$$
\begin{aligned}
t & =n \tan \left(\frac{\text { angle }}{2}\right) \\
b & =-t \\
r & =t \cdot \text { ratio } \\
l & =-r \\
n & =\text { near } \\
f & =\text { far }
\end{aligned}
$$

Question

- When choosing the near and far planes in the gluPerspective () call, why not let n be very small, say 0.000001 , and let f be very large, say 1000000 .0?

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates
(4) Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix

6 Orthogonal Projections
(7) Assignment

Orthogonal Projections

- The matrix for an orthogonal projection is much simpler.
- All it does is rescale the x-, y-, and z-coordinates to $[-1,1]$.
- The positive direction of z is reversed.
- It represents a linear transformation; the w-coordinate remains 1 .

Orthogonal Projections

- The matrix of an orthogonal projection is

$$
\mathbf{P}=\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+1}{r-} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & -\frac{2}{f-n} & \frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Outline

(1) Debugging Tip of the Day
(2) The Graphics Pipeline
(3) Eye Coordinates to Clip Coordinates
(4) Clip Coordinates to Normalized Device Coordinates
(5) Creating the Projection Matrix
(6) Orthogonal Projections
(7) Assignment

Homework

Homework

- Read Section 4.4 - Parallel projections.
- Read Section 4.5 - Perspective projections.
- Read Section 4.6 - Perspective projections in OpenGL.
- Read Section 4.7 - Perspective-projection matrices.

